Acetylation of Human TCF4 (TCF7L2) Proteins Attenuates Inhibition by the HBP1 Repressor and Induces a Conformational Change in the TCF4::DNA Complex

نویسندگان

  • Susanne Elfert
  • Andreas Weise
  • Katja Bruser
  • Martin L. Biniossek
  • Sabine Jägle
  • Niklas Senghaas
  • Andreas Hecht
چکیده

The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modification. The association of TCF/LEF family members with acetyltransferases and deacetylases prompted us to investigate whether vertebrate TCF/LEF proteins are subject to acetylation. Through co-expression with p300 and CBP and subsequent analyses using mass spectrometry and immunodetection with anti-acetyl-lysine antibodies we show that TCF4 can be acetylated at lysine K₁₅₀ by CBP. K₁₅₀ acetylation is restricted to TCF4E splice variants and requires the simultaneous presence of β-catenin and the unique TCF4E C-terminus. To examine the functional consequences of K₁₅₀ acetylation we substituted K₁₅₀ with amino acids representing the non-acetylated and acetylated states. Reporter gene assays based on Wnt/β-catenin-responsive promoter regions did not indicate a general role of K₁₅₀ acetylation in transactivation by TCF4E. However, in the presence of CBP, non-acetylatable TCF4E with a K₁₅₀R substitution was more susceptible to inhibition by the HBP-1 repressor protein compared to wild-type TCF4E. Acetylation of K₁₅₀ using a bacterial expression system or amino acid substitutions at K₁₅₀ alter the electrophoretic properties of TCF4E::DNA complexes. This result suggests that K₁₅₀ acetylation leads to a conformational change that may also represent the mechanism whereby acetylated TCF4E acquires resistance against HBP1. In summary, TCF4 not only recruits acetyltransferases but is also a substrate for these enzymes. The fact that acetylation affects only a subset of TCF4 splice variants and is mediated preferentially by CBP suggests that the conditional acetylation of TCF4E is a novel regulatory mechanism that diversifies the transcriptional output of Wnt/β-catenin signaling in response to changing intracellular signaling milieus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis*

The activity of the CDK inhibitor p21 is associated with diverse biological activities, including cell proliferation, senescence, and tumorigenesis. However, the mechanisms governing transcription of p21 need to be extensively studied. In this study, we demonstrate that the high-mobility group box-containing protein 1 (HBP1) transcription factor is a novel activator of p21 that works as part of...

متن کامل

Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS

The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS) requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC) proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tis...

متن کامل

Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells.

Wnt signaling activates gene expression through the induced formation of complexes between DNA-binding T-cell factors (TCFs) and the transcriptional coactivator beta-catenin. In colorectal cancer, activating Wnt pathway mutations transform epithelial cells through the inappropriate activation of a TCF7L2/TCF4 target gene program. Through a DNA array-based genome-wide analysis of TCF4 chromatin ...

متن کامل

Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/β-catenin targets

Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of beta-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, p...

متن کامل

Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation.

Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013